Дискретная математика

Раздел 1. Математическая логика

Тема 1. Логика высказываний

Тема 2. Булевы функции

Тема 3. Логика предикатов

Логика высказываний обладает довольно слабыми выразительными возможностями. В ней нельзя выразить даже очень простые с математической точки зрения рассуждения. Рассмотрим, например, следующее умозаключение. «Всякое целое число является рациональным. Число 2 – целое. Следовательно, 2 – рациональное число». Все эти утверждения с точки зрения логики высказываний являются атомарными. Средствами логики высказываний нельзя вскрыть внутреннюю структуру и поэтому нельзя доказать логичность этого рассуждения в рамках логики высказываний. Мы рассмотрим расширение логики высказываний, которое называется логика предикатов первого порядка или короче: логика первого порядка.

§1. Предикаты и операции над ними

§2. Формулы логики первого порядка

§3. Интерпретация в логике первого порядка

§4. Равносильность, законы логики первого порядка

§6. Логическое следствие

Определение. Формула G(x1,…,xn) называется логическим следствием формул F1(x1,…,xn),…,Fk(x1,…,xn), если для любой интерпретации j с областью М и любых a1,…,anÎM из истинности высказываний (jF1)(a1,…,an),…,(jFk)(a1,…,an) следует истинность высказывания (jG)(a1,…,an).

Приведем примеры. Пусть F1=("x)(P(x)®Q(x)&R(x)), F2=P(c), G=Q(c). Покажем, что формула G является логическим следжствием формул F1 и F2. Возьмем интерпретацию j с областью М такую, что высказывания jF1 и jF2 истинны. Элемент j(c) обозначим буквой b. Истинность jF2 означает, что высказывание (jP)(b) истинно. А истинность высказывания jF1 означает, что для любого элемента xÎM истинно высказывание (jP)(x)®(jQ)(x)&(jR)(x). Поскольку это высказывание истинно для любого х, то, в частности, истинно для x=b. Мы видим, что истинна импликация (jP)(b)®(jQ)(b)&(jR)(b) и ее посылка (jP)(b). Из таблицы истинности импликации следует истинность заключения (jQ)(b)&(jR)(b). Следовательно, истинно высказывание (jQ)(b). А это и есть jG. Мы доказали, что если истинны высказывания jF1 и jF2, то истинно высказывание jG, т.е. что G –логическое следствие F1 и F2.

В качестве второго примера докажем нелогичность рассуждения о первокурсниках. Мы записали это рассуждение в виде последовательности формул Н12, и Н3. Для доказательства нелогичности рассуждения надо найти интерпретацию j, при которой формулы Н1 и Н2 истинны, а формула Н3 ложна. Пусть множество М состоит из трех элементов 2,3,4. Символы С, Л и П проинтерпретируем следующим образом:


(jС)(х)=«х – простое число»,

(jЛ)(х)=«х – четное число»,

(jП)(х)=’’х>4»,


т.е. П интерпретируется как тождественно ложный предикат. Тогда формулы Н1 и Н2 истинны, поскольку посылки импликаций этих формул ложны при любом х. А формула Н3 ложна. Чтобы убедиться в этом достаточно взять х=2. Следовательно, рассуждение о первокурсниках нелогично.


Определение. Множество формул


K={F1(x1,…,xl),…,Fm(x1,…,xl)}


называется выполнимым, если существует интерпретация j с областью М и элементы a1,…,alÎM такие, что все высказывания (jF1)(a1,…,al),…,(jFm)(a1,…,al) истинны.

Множество формул K = { F1=("x)($y)(P(y)&Q(x,y)), F2=("y)Q(c,y), F3=ØP(c) } выполнимо. Возьмем в качестве области интерпретации множество натуральных чисел N. Символы P,Q и C проинтерпретируем следующим образом:


(jP)(u)=«u – простое число»,

(jQ)(u,v)=«u меньше или равно v»,

(j(C)=1.


Тогда высказывание jF1 означает, что для любого натурального числа х найдется простое число y, которое не меньше х, высказывание jF2 означает, что 1 –наименьшее натуральное число, а высказывание jF3 означает, что 1 – непростое число. Ясно, что все эти высказывания истинны, и поэтому множество формул K выполнимо.


Понятия логического следствия и выполнимости в логике первого порядка связаны точно так же, как и в логике высказываний.


Теорема 3.2. Формула G(x1,…,xn) является логическим следствием формул F1(x1,…,xn),…,Fk(x1,…,xn) тогда и только тогда, когда множество формул {F1(x1,…,xn),…,Fk(x1,…,xn),ØG(x1,…,xn)} невыполнимо.

Доказательство теоремы 3.2 аналогично доказательству теоремы 1.2 и поэтому не приводится.

§7. Нормальные формы

§8. Невыразимость в логике первого порядка

§9. Многосортная логика первого порядка

Задачи

Ответы, указания и решения

Тема 4. Метод резолюций

Раздел 2. Теория графов

Тема 5. Раскраски

Тема 6. Ориентированные графы и сети


Fair.ru Ярмарка сайтов
Rambler's Top100 Submitter.ru - Free promoting

Дизайн: Alex © 2002
Все вопросы и предложения можно направлять по адресу cad@mail.ustu.ru